Download Engineering Thermodynamics by R.K. Rajput Pdf ( Third Edition ) - GateHelps

Latest

This blog is helpful for gate online preparation. We provide gate study materials, short notes, video lectures which covers entire syllabus of gate.

Thursday, March 10, 2016

Download Engineering Thermodynamics by R.K. Rajput Pdf ( Third Edition )



To download Engineering Thermodynamics by R.K. Rajput click on the below link



engg thermodynamics by rk rajput



 


Contents of Engineering Thermodynamics by R.K. Rajput
engg thermodynamics by rk rajput
                                   



1. INTRODUCTION—OUTLINE OF SOME DESCRIPTIVE SYSTEMS...1—13

1.1. Steam Power Plant ... 1
1.1.1. Layout ... 1
1.1.2. Components of a modern steam power plant ... 2

1.2. Nuclear Power Plant ... 3

1.3. Internal Combustion Engines ... 4
1.3.1. Heat engines ... 4
1.3.2. Development of I.C. engines ... 4
1.3.3. Different parts of I.C. engines ... 4
1.3.4. Spark ignition (S.I.) engines ... 5
1.3.5. Compression ignition (C.I.) engines ... 7

1.4. Gas Turbines ... 7
1.4.1. General aspects ... 7
1.4.2. Classification of gas turbines ... 8
1.4.3. Merits and demerits of gas turbines ... 8
1.4.4. A simple gas turbine plant ... 9
1.4.5. Energy cycle for a simple-cycle gas turbine ... 10

1.5. Refrigeration Systems ... 10

Highlights ... 12

Theoretical Questions ... 13


2. BASIC CONCEPTS OF THERMODYNAMICS ... 14—62

2.1. Introduction to Kinetic Theory of Gases ... 14

2.2. Definition of Thermodynamics ... 18

2.3. Thermodynamic Systems ... 18
2.3.1. System, boundary and surroundings ... 18
2.3.2. Closed system ... 18
2.3.3. Open system ... 19
2.3.4. Isolated system ... 19
2.3.5. Adiabatic system ... 19
2.3.6. Homogeneous system ... 19
2.3.7. Heterogeneous system ... 19

2.4. Macroscopic and Microscopic Points of View ... 19

2.5. Pure Substance ... 20

2.6. Thermodynamic Equilibrium ... 20

2.7. Properties of Systems ... 21

2.8. State ... 21

2.9. Process ... 21

2.10. Cycle ... 22

2.11. Point Function ... 22

2.12. Path Function ... 22

2.13. Temperature ... 23

2.14. Zeroth Law of Thermodynamics ... 23

2.15. The Thermometer and Thermometric Property ... 24
2.15.1. Introduction ... 24
2.15.2. Measurement of temperature ... 24
2.15.3. The international practical temperature scale ... 31
2.15.4. Ideal gas ... 33

2.16. Pressure ... 33
2.16.1. Definition of pressure ... 33
2.16.2. Unit for pressure ... 34
2.16.3. Types of pressure measurement devices ... 34
2.16.4. Mechanical type instruments ... 34

2.17. Specific Volume ... 45

2.18. Reversible and Irreversible Processes ... 46

2.19. Energy, Work and Heat ... 46
2.19.1. Energy ... 46
2.19.2. Work and heat ... 46

2.20. Reversible Work ... 48

Highlights ... 58

Objective Type Questions ... 59

Theoretical Questions ... 61

Unsolved Examples ... 61



3. PROPERTIES OF PURE SUBSTANCES ...63—100

3.1. Definition of the Pure Substance ... 63

3.2. Phase Change of a Pure Substance ... 64

3.3. p-T (Pressure-temperature) Diagram for a Pure Substance ... 66

3.4. p-V-T (Pressure-Volume-Temperature) Surface ... 67

3.5. Phase Change Terminology and Definitions ... 67

3.6. Property Diagrams in Common Use ... 68

3.7. Formation of Steam ... 68

3.8. Important Terms Relating to Steam Formation ... 70

3.9. Thermodynamic Properties of Steam and Steam Tables ... 72

3.10. External Work Done During Evaporation ... 73

3.11. Internal Latent Heat ... 73

3.12. Internal Energy of Steam ... 73

3.13. Entropy of Water ... 73

3.14. Entropy of Evaporation ... 73

3.15. Entropy of Wet Steam ... 74

3.16. Entropy of Superheated Steam ... 74

3.17. Enthalpy-Entropy (h-s) Chart or Mollier Diagram ... 75

3.18. Determination of Dryness Fraction of Steam ... 89
3.18.1. Tank or bucket calorimeter ... 89
3.18.2. Throttling calorimeter ... 92
3.18.3. Separating and throttling calorimeter ... 93

Highlights ... 96

Objective Type Questions ... 97

Theoretical Questions ... 99

Unsolved Examples ... 99



4. FIRST LAW OF THERMODYNAMICS ... 101—226

4.1. Internal Energy ... 101

4.2. Law of Conservation of Energy ... 101

4.3. First Law of Thermodynamics ... 101

4.4. Application of First Law to a Process ... 103

4.5. Energy—A Property of System ... 103

4.6. Perpetual Motion Machine of the First Kind-PMM1 ... 104

4.7. Energy of an Isolated System ... 105

4.8. The Perfect Gas ... 105
4.8.1. The characteristic equation of state ... 105
4.8.2. Specific heats ... 106
4.8.3. Joule’s law ... 107
4.8.4. Relationship between two specific heats ... 107
4.8.5. Enthalpy ... 108
4.8.6. Ratio of specific heats ... 109

4.9. Application of First Law of Thermodynamics to Non-flow or Closed System ... 109

4.10. Application of First Law to Steady Flow Process ... 150

4.11. Energy Relations for Flow Process ... 152

4.12. Engineering Applications of Steady Flow Energy Equation (S.F.E.E.) ... 155
4.12.1. Water turbine ... 155
4.12.2. Steam or gas turbine ... 156
4.12.3. Centrifugal water pump ... 157
4.12.4. Centrifugal compressor ... 157
4.12.5. Reciprocating compressor ... 158
4.12.6. Boiler ... 159
4.12.7. Condenser ... 159
4.12.8. Evaporator ... 160
4.12.9. Steam nozzle ... 161

4.13. Throttling Process and Joule-Thompson Porous Plug Experiment ... 162

4.14. Heating-Cooling and Expansion of Vapours ... 183

4.15. Unsteady Flow Processes ... 210

Highlights ... 215

Objective Type Questions ... 216

Theoretical Questions ... 219

Unsolved Examples ... 219



5. SECOND LAW OF THERMODYNAMICS AND ENTROPY ... 227—305

5.1. Limitations of First Law of Thermodynamics and Introduction to Second Law ... 227

5.2. Performance of Heat Engines and Reversed Heat Engines ... 227

5.3. Reversible Processes ... 228

5.4. Statements of Second Law of Thermodynamics ... 229
5.4.1. Clausius statement ... 229
5.4.2. Kelvin-Planck statement ... 229
5.4.3. Equivalence of Clausius statement to the Kelvin-Planck statement ... 229

5.5. Perpetual Motion Machine of the Second Kind ... 230

5.6. Thermodynamic Temperature ... 231

5.7. Clausius Inequality ... 231

5.8. Carnot Cycle ... 233

5.9. Carnot’s Theorem ... 235

5.10. Corollary of Carnot’s Theorem ... 237

5.11. Efficiency of the Reversible Heat Engine ... 237

5.12. Entropy ... 252
5.12.1. Introduction ... 252
5.12.2. Entropy—a property of a system ... 252
5.12.3. Change of entropy in a reversible process ... 253

5.13. Entropy and Irreversibility ... 254

5.14. Change in Entropy of the Universe ... 255

5.15. Temperature Entropy Diagram ... 257

5.16. Characteristics of Entropy ... 257

5.17. Entropy Changes for a Closed System ... 258
5.17.1. General case for change of entropy of a gas ... 258
5.17.2. Heating a gas at constant volume ... 259
5.17.3. Heating a gas at constant pressure ... 260
5.17.4. Isothermal process ... 260
5.17.5. Adiabatic process (reversible) ... 261
5.17.6. Polytropic process ... 262
5.17.7. Approximation for heat absorbed ... 263

5.18. Entropy Changes for an Open System ... 264

5.19. The Third Law of Thermodynamics ... 265

Highlights ... 298

Objective Type Questions ... 299

Theoretical Questions ... 302

Unsolved Examples ... 302



6. AVAILABILITY AND IRREVERSIBILITY ... 306—340

6.1. Available and Unavailable Energy ... 306

6.2. Available Energy Referred to a Cycle ... 306

6.3. Decrease in Available Energy When Heat is Transferred Through a Finite Temperature Difference ... 308

6.4. Availability in Non-flow Systems ... 310

6.5. Availability in Steady-flow Systems ... 311

6.6. Helmholtz and Gibb’s Functions ... 311

6.7. Irreversibility ... 312

6.8. Effectiveness ... 313

Highlights ... 336

Objective Type Questions ... 337

Theoretical Questions ... 338

Unsolved Examples ... 338



7. THERMODYNAMIC RELATIONS ... 341—375

7.1. General Aspects ... 341

7.2. Fundamentals of Partial Differentiation ... 341

7.3. Some General Thermodynamic Relations ... 343

7.4. Entropy Equations (Tds Equations) ... 344

7.5. Equations for Internal Energy and Enthalpy ... 345

7.6. Measurable Quantities ... 346
7.6.1. Equation of state ... 346
7.6.2. Co-efficient of expansion and compressibility ... 347
7.6.3. Specific heats ... 348
7.6.4. Joule-Thomson co-efficient ... 351

7.7. Clausius-Claperyon Equation ... 353

Highlights ... 373

Objective Type Questions ... 374

Exercises ... 375



8. IDEAL AND REAL GASES ...376—410

8.1. Introduction ... 376

8.2. The Equation of State for a Perfect Gas ... 376

8.3. p-V-T Surface of an Ideal Gas ... 379

8.4. Internal Energy and Enthalpy of a Perfect Gas ... 379

8.5. Specific Heat Capacities of an Ideal Gas ... 380

8.6. Real Gases ... 381

8.7. Van der Waal’s Equation ... 381

8.8. Virial Equation of State ... 390

8.9. Beattie-Bridgeman Equation ... 390

8.10. Reduced Properties ... 391

8.11. Law of Corresponding States ... 392

8.12. Compressibility Chart ... 392

Highlights ... 407

Objective Type Questions ... 408

Theoretical Questions ... 408

Unsolved Examples ... 409



9. GASES AND VAPOUR MIXTURES ... 411—448

9.1. Introduction ... 411

9.2. Dalton’s Law and Gibbs-Dalton Law ... 411

9.3. Volumetric Analysis of a Gas Mixture ... 413

9.4. The Apparent Molecular Weight and Gas Constant ... 414

9.5. Specific Heats of a Gas Mixture ... 417

9.6. Adiabatic Mixing of Perfect Gases ... 418

9.7. Gas and Vapour Mixtures ...

419 Highlights ... 444

Objective Type Questions ... 444

Theoretical Questions ... 445

Unsolved Examples ... 445



10. PSYCHROMETRICS ...449—486

10.1. Concept of Psychrometry and Psychrometrics ... 449

10.2. Definitions ... 449

10.3. Psychrometric Relations ... 450

10.4. Psychrometers ... 455

10.5. Psychrometric Charts ... 456

10.6. Psychrometric Processes ... 458
10.6.1. Mixing of air streams ... 458
10.6.2. Sensible heating ... 459
10.6.3. Sensible  cooling ... 460
10.6.4. Cooling and dehumidification ... 461
10.6.5. Cooling and humidification ... 462
10.6.6. Heating and dehumidification ... 463
10.6.7. Heating and humidification ... 463

Highlights ... 483

Objective Type Questions ... 483

Theoretical Questions ... 484

Unsolved Examples ... 485



11. CHEMICAL THERMODYNAMICS ... 487—592

11.1. Introduction ... 487

11.2. Classification of Fuels ... 487

11.3. Solid Fuels ... 488

11.4. Liquid Fuels ... 489

11.5. Gaseous Fuels ... 489

11.6. Basic Chemistry ... 490

11.7. Combustion Equations ... 491

11.8. Theoretical Air and Excess Air ... 493

11.9. Stoichiometric Air Fuel (A/F) Ratio ... 493

11.10. Air-Fuel Ratio from Analysis of Products ... 494

11.11. How to Convert Volumetric Analysis to Weight Analysis ... 494

11.12. How to Convert Weight Analysis to Volumetric Analysis ... 494

11.13. Weight of Carbon in Flue Gases ... 494

11.14. Weight of Flue Gases per kg of Fuel Burnt ... 495

11.15. Analysis of Exhaust and Flue Gas ... 495

11.16. Internal Energy and Enthalpy of Reaction ... 497

11.17. Enthalpy of Formation (∆Hf) ... 500

11.18. Calorific or Heating Values of Fuels ... 501

11.19. Determination of Calorific or Heating Values ... 501
11.19.1. Solid and Liquid Fuels ... 502
11.19.2. Gaseous Fuels ... 504

11.20. Adiabatic Flame Temperature ... 506

11.21. Chemical Equilibrium ... 506

11.22. Actual Combustion Analysis ... 507

Highlights ... 537

Objective Type Questions ... 538

Theoretical Questions ... 539

Unsolved Examples ... 540



12. VAPOUR POWER CYCLES ... 543—603

12.1. Carnot Cycle ... 543

12.2. Rankine Cycle ... 544

12.3. Modified Rankine Cycle ... 557

12.4. Regenerative Cycle ... 562

12.5. Reheat Cycle ... 576

12.6. Binary Vapour Cycle ... 584

Highlights ... 601

Objective Type Questions ... 601

Theoretical Questions ... 602

Unsolved Examples ... 603



13. GAS POWER CYCLES ... 604—712

13.1. Definition of a Cycle...604

13.2. Air Standard Efficiency ... 604

13.3. The Carnot Cycle ... 605

13.4. Constant Volume or Otto Cycle ... 613

13.5. Constant Pressure or Diesel Cycle ... 629

13.6. Dual Combustion Cycle ... 639

13.7. Comparison of Otto, Diesel and Dual Combustion Cycles ... 655
13.7.1. Efficiency versus compression ratio ... 655
13.7.2. For the same compression ratio and the same heat input ... 655
13.7.3. For constant maximum pressure and heat supplied ... 656

13.8. Atkinson Cycle ... 657

13.9. Ericsson Cycle ... 660

13.10. Gas Turbine Cycle-Brayton Cycle ... 661
13.10.1. Ideal Brayton cycle ... 661
13.10.2. Pressure ratio for maximum work ... 663
13.10.3. Work ratio ... 664
13.10.4. Open cycle gas turbine-actual brayton cycle ... 665
13.10.5. Methods for improvement of thermal efficiency of open cycle gas turbine plant ... 667
13.10.6. Effect of operating variables on thermal efficiency ... 671
13.10.7. Closed cycle gas turbine ... 674
13.10.8. Gas turbine fuels ... 679

Highlights ... 706

Theoretical Questions ... 707

Objective Type Questions ... 707

Unsolved Examples ... 709



14. REFRIGERATION CYCLES ... 713—777

14.1. Fundamentals of Refrigeration ... 713
14.1.1. Introduction ... 713
14.1.2. Elements of refrigeration systems ... 714
14.1.3. Refrigeration systems ... 714
14.1.4. Co-efficient of performance (C.O.P.) ... 714
14.1.5. Standard rating of a refrigeration machine ... 715

14.2. Air Refrigeration System ... 715
14.2.1. Introduction ... 715
14.2.2. Reversed Carnot cycle ... 716
14.2.3. Reversed Brayton cycle ... 722
14.2.4. Merits and demerits of air refrigeration system ... 724

14.3. Simple Vapour Compression System ... 730
14.3.1. Introduction ... 730
14.3.2. Simple vapour compression cycle ... 730
14.3.3. Functions of parts of a simple vapour compression system ... 731
14.3.4. Vapour compression cycle on temperature-entropy (T-s) diagram...732
14.3.5. Pressure-enthalpy (p-h) chart ... 734
14.3.6. Simple vapour compression cycle on p-h chart ... 735
14.3.7. Factors affecting the performance of a vapour compression system ... 736
14.3.8. Actual vapour compression cycle ... 737
14.3.9. Volumetric efficiency ... 739
14.3.10. Mathematical analysis of vapour compression refrigeration ... 740

14.4. Vapour Absorption System ... 741
14.4.1. Introduction ... 741
14.4.2. Simple vapour absorption system ... 742
14.4.3. Practical vapour absorption system ... 743
14.4.4. Comparison between vapour compression and vapour absorption systems ... 744

14.5. Refrigerants ... 764
14.5.1. Classification of refrigerants ... 764
14.5.2. Desirable properties of an ideal refrigerant ... 766
14.5.3. Properties and uses of commonly used refrigerants ... 768

Highlights ... 771

Objective Type Questions ... 772

Theoretical Questions ... 773

Unsolved Examples ... 774



15. HEAT TRANSFER ... 778—856

15.1. Modes of Heat Transfer ... 778

15.2. Heat Transmission by Conduction ... 778
15.2.1. Fourier’s law of conduction ... 778
15.2.2. Thermal conductivity of materials ... 780
15.2.3. Thermal resistance (Rth) ... 782
15.2.4. General heat conduction equation in cartesian coordinates ... 783
15.2.5. Heat conduction through plane and composite walls ... 787
15.2.6. The overall heat transfer coefficient ... 790
15.2.7. Heat conduction through hollow and composite cylinders ... 799
15.2.8. Heat conduction through hollow and composite spheres ... 805
15.2.9. Critical thickness of insulation ... 808

15.3. Heat Transfer by Convection ... 812

15.4. Heat Exchangers ... 815
15.4.1. Introduction ... 815
15.4.2. Types of heat exchangers ... 815
15.4.3. Heat exchanger analysis ... 820
15.4.4. Logarithmic temperature difference (LMTD) ... 821

15.5. Heat Transfer by Radiation ... 832
15.5.1. Introduction ... 832
15.5.2. Surface emission properties ... 833
15.5.3. Absorptivity, reflectivity and transmittivity ... 834
15.5.4. Concept of a black body ... 836
15.5.5. The Stefan-Boltzmann law ... 836
15.5.6. Kirchhoff’s law ... 837
15.5.7. Planck’s law ... 837
15.5.8. Wien’s displacement law ... 839
15.5.9. Intensity of radiation and Lambert’s cosine law ... 840
15.5.10. Radiation exchange between black bodies separated by a non-absorbing medium ... 843

Highlights ... 851

Objective Type Questions ... 852

Theoretical Questions ... 854

Unsolved Examples ... 854



16. COMPRESSIBLE FLOW ... 857—903

16.1. Introduction ... 857

16.2. Basic Equations of Compressible Fluid Flow ... 857
16.2.1. Continuity equation ... 857
16.2.2. Momentum equation ... 858
16.2.3. Bernoulli’s or energy equation ... 858

16.3. Propagation of Disturbances in Fluid and Velocity of Sound ... 862
16.3.1. Derivation of sonic velocity (velocity of sound) ... 862
16.3.2. Sonic velocity in terms of bulk modulus ... 864
16.3.3. Sonic velocity for isothermal process ... 864
16.3.4. Sonic velocity for adiabatic process ... 865

16.4. Mach Number ... 865

16.5. Propagation of Disturbance in Compressible Fluid ... 866

16.6. Stagnation Properties ... 869
16.6.1. Expression for stagnation pressure (ps) in compressible flow ... 869
16.6.2. Expression for stagnation density (ρs) ... 872
16.6.3. Expression for stagnation temperature (Ts) ... 872

16.7. Area—Velocity Relationship and Effect of Variation of Area for Subsonic, Sonic and Supersonic Flows ... 876

16.8. Flow of Compressible Fluid Through a Convergent Nozzle ... 878

16.9. Variables of Flow in Terms of Mach Number ... 883

16.10. Flow Through Laval Nozzle (Convergent-divergent Nozzle) ... 886

16.11. Shock Waves ... 892
16.11.1. Normal shock wave ... 892
16.11.2. Oblique shock wave ... 895
16.11.3. Shock Strength ... 895

Highlights ... 896

Objective Type Questions ... 899

Theoretical Questions ... 901

Unsolved Examples ... 902



Competitive Examinations Questions with Answers ... 904—919

Index ... 920—922


Steam Tables and Mollier Diagram ... (i)—(xx) 

No comments:

Post a Comment